
0
Lfl

INSTITUTE FOR COMPUTATIONAL
NMATHEMATICS AND APPLICATIONS

Technical Report ICMA-89-143 November 1989

DIFFERENTIAL-GEOMETRIC TECHNIQUES FOR SOLVING DIFFERENTIAL

ALGEBRAIC EQUATIONS

by

Florian A. Potra
I and Werner C. Rheinboldt

2

......................... ..............-,.--.,-.... ." "

'-- m. . ..

Department of Mathematics and Statistics

University of Pittsburgh DTIC
A ELECTE
V. JAN 0 8 1 90

0 MI. 0Z) 0D

r 043



Technical Report ICMA-89-143 November 1989

DIFFERENTIAL-GEOMETRIC TECHNIQUES FOR SOLVING DIFFERENTIAL

ALGEBRAIC EQUATIONS

by

Florian A. Potra
I1 and Werner C. Rheinboldt 

2

November, 1989

1) Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242.

2) Department of Mathematics and Statistics, University of Pittsburgh,
Pittsburgh, PA 15260. The work of this author was in part supported
under ONR-grant N-00014-90-J-1025 and NSF-grant CCR-8907654.

"I I\F ," , r. P.3 November,.198

3J



Differential-Geometric Techniques for Solving Differential
Algebraic Equations

by

Florian A. Potra1 and Werner C. Rheinboldt2

1. Introduction

Differential-algebraic systems of equations (DAEs) arise in many areas of

science and engineering. In particular, the equations of motion for a

constrained mechanical system considered in this volume are usually

modelled as a second order DAE. In recent years the literature on the

numerical solution of such systems has grown rapidly, (see-egthe -
--monographs [1], [41). However, up to now, existence theories for nonlinear

DAEs are available only for a few selected classes of systems.

In [10] a differential-geometric approach was introduced for the analysis of

the solution properties of a class of linear DAEs, and in [12] this approach was

extended to general, semi-implicit, nonlinear equations of first and second

order; that is, to systems with separated algebraic and differential equations.

Moreover, it was shown there that these results lead to a general local
parametrization approach for the computational solution of these systems.

The differential-geometric approach is based on the observation that, as
long as we expect the solution of a DAE to be some smooth path in the space

of dependent variables, the system must define a dynamical system in

suitable subsets of that space. While this connection with dynamical systems is

obvious for ordinary differential equations (ODEs), the same is certainly not

true for DAEs. In fact, besides [10], [12] we are only aware of [9] as the only

1Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242 "

2Dept. of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA - . .
15260. The work of this author was in part supported under ONR-grant N-00014-90-
J-1025 and NSF-grant CCR-8907654.
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further study that specifically addresses this connection.

This article is intended to be an introductory overview of certain of the cited
differential-geometric results and of some of the numerical algorithms that can
be developed from them. In order to make the presentation widely accessible,
we begin in section 2 with a brief summary of concepts and notations about

sub-manifolds of finite-dimensional spaces and their first and second tangent
bundles. Then section 3 presents an overview of basic results about dynamical
systems in the form needed for our DAE-theory. This is followed in sections 4
and 5 by a presentation of the principal results of [12] on the existence and
uniqueness of solutions and the use of local parametrizations. However, in
order to avoid some of the technical aspects of the general theory we restrict
ourselves, for the most part, to DAEs with certain linearity properties including, 3
in particular, the equations of motion for constrained mechanical system
mentioned earlier. In section 6 we discuss the computational implementation

of local parametrizations and identify two useful parametrizations induced by
the tangent space of the constraint manifold and by a so-called "coordinate
partitioning", respectively. Then section 7 presents algorithms based on the 5
application of explicit and implicit multi-step methods to the resulting local
dynamical systems and in section 8 versions of these algorithms for the 5
solution of the Euler-Lagrange equations are formulated. These algorithms
generalize those previously discussed in [5] and [8]. Finally, in section 9 we 5
give some computational results for a four-bar-linkage mechanism..

i
2. Differential-Geometric Background

In this section we collect some basic material needed throughout the
remainder of the presentation. For further details we refer to standard text on 3
differential geometry such as [6] or [13].

We begin with some standard terminology. If U is an open set of Rn then a I
mapping F:U -- Rm from U into Rm is of class CP , pO, on U if all partial

derivatives of F up to and including order p exist and are continuous in U.

I
i



I
a 3

More generally, on an arbitrary set S of Rn a map F:S -4 Rm is of class CP if for
each x E S there exists an open set UcRn containing x and a mapping

G:U -* Rm of class CP that coincides with F throughout UrnS. A map F:S -4 T

between the sets S c Rn and T c Rm is a homeomorphism if F is a one-to-one

mapping from S onto T and both F and its inverse F-1 :T -4 S are continuous. A

homeomorphism F:S -- T is a CP-diffeomorphism between S and T and both F

and F-1 are of class C9.

As usual, L(Rn,R m) is the space of all linear mappings with domain Rn and
range in Rm and by L2 (Rn,Rm) the space of all bilinear maps from Rn to Rm. For

any Cl-map F:U c Rn -4 Rm , the derivative of F at x r U is the linear map DF(x)
in L(Rn,R m) defined by DF(x)h = limt_ o [F(x+th) - F(x)]. In other words, DF(x) is
the linear map that corresponds to the mxn matrix of first partial derivatives of F

at x. Analogously, if F is of class C2, then the second derivative of F at x is the
bilinear map D2F(x) E L2(Rn,R m) defined by the second partial derivatives of F

at x. Note that when F is a Cl-diffeomorphism between the open sets U C Rn

and V c Rm then n=m and DF(x) is nonsingular at all points x r U.

A subset M c Rn is a d-dimensional Ce-sub-manifold of Rn if for each point
x ; M there exists an open set U c Rn containing x such that the neighborhood

U r- M of x on M is CP-diffeomorphic to an open subset V of Rd. Any particular
diffeormorphism 7:U r M - V is called a chart on U n M and its inverse a local
coordinate system on U n M.

Note that by this definition any open subset U of Rn is an n-dimensional

CO-sub-manifold of Rn. The tangent space TxU of this manifold U at any point
x E U is the n-dimensional linear space {x}xR n and the first and second tangent

bundles TU and T2 U of U are the 2n- dimension" and 4n-dimensional
submanifolds UxRn of (Rn) 2 and Ux(Rn) 3 of (Rn) 4, respectively3 .

The classical example of a 2-dimensional C-sub-manifold of R3 is, of

course, the unit sphere S2 = { ( jm,) E R3 ; 2 + 712 + C2 = 1). More generally,

3 We use here the notation (Rn)k = RnxRn ... xR n (k-times).
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let F:E c Rn -- Rm, n >m, be some mapping of class Cp ,pl, on the open set E
of Rn. A point x : E is a regular point of F if dim DF(x)R n = m; that is, if the

derivative DF(x) has full rank m. A point b c Rm is a regular value of F if the

inverse image F(-')(b) = { x E E, F(x) = b} consists only of regular points. Then

the following result holds:

Theorem 1: Let F:E c Rn ---> Rm , n > m, be a mapping of class Cp ,p2l, on the I
open set E of Rn. Then for any regular value b E Rm the inverse image F(M)(b) is

either empty or an (n-m)-dimensional CP-sub-manifold of Rn . I

From now on, let F:E c Rn -- Rm , d=n-m > 0, be a given mapping of class

CP ,p _3, on the non-empty open set E of Rn such that DF(x)R n = Rm for x ( E.
Then each member of the family of sets 5
(2.1) Mb = ( x r E, F(x) = b), b E F(E), 5
is a non- empty d-dimensional CP-sub-manifold of Rn . Clearly, any point x0 eE

belongs to exactly one of these manifolds, namely that for b = F(xo); we shall

call this the manifold of the family through the point xo.

For any point x • Mb the tangent space TxMb of Mb at x is defined by I

(2.2) TxMb = { (x,p) e TxRn; DF(x)p = 0 ).

Clearly, TXMb is a d-dimensional linear subspace of the n-dimensional linear

space TxR n = {x}xR n. The tangent bundle TMb of Mb is the disjoint union of all

tangent spaces TXMb for x e Mb; that is,

(2.3) TMb = { (x,p) e TE; F(x) = b, DF(x)p = 0).

In other words, the points (x,p) E TMb are the zeroes of the mapping 5
H:ExR n -R m xR m; H(x,p)= b V (xp)E ExR5

I

I



1 5
Since DF(x) was assumed to have full rank on E it follows that the derivative

DH (x,p) =(DFx 0
D D2F(x)p DF(x)I

has full rank on TE and hence, by Theorem 1, that the tangent bundle is a

non-empty, 2d-dimensional CP- 1-sub-manifold of TRn. Therefore, TMb itself has

I a tangent bundle, namely, the 4d-dimensional Cp-2-sub-manifold T(TMb)
T2M b Of the 4n-dimensional product space T2Rn defined by

1(2.4) T2M b = (x,y),(p,q)) reT 2E; F(x)=b, DF(x)p = 0, DF(x)q+iD 2F(x)(y,p)=0 }

3. Vectorfields

A CG-vectorfield, a : 1, on some open subset E0 of Rn is a CO-mapping on
E. such that

3(3.1) 7r: E0 -* TEO; n(x) =(x, O(x)), V x E E0.

An integral curve of nr through a point xO r= E0 is any Ca-path : J - E0, defineda on some open interval J c R1 containing 0 E J, for which (4(t),4'(t)) = Kr(4(t)) fora t E J and (O) = x0 ; that is, which solves the initial value problem

a(3.2) x' = e(x), x E E , x(0) = X01

As before, let F:E c Rn - Rm, d=n-m > 0, be a given mapping of class CP,3 p 3, on the non-empty open set E of Rn such that DF(x)Rn = Rml for x E E, and

consider the family (2.1) of d-dimensional CP-sub-manifolds of Rn. We call the5 vectorfield (3.1) tangential to this family of manifolds (2.1) if 7r(x)e=Txb for all
xc= Eor)Mb* Since xr Mb b=F (x), for any XE E~r)E, this requires that

1 (3.3) DF(x)8(x) = 0, V x e E~r-E.
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Thus, for any integral curve : J - E nE of ic through xo r Eor-E it follows that
DF( (t)) '(t) = 0, t E J. Since (J) is a connected subset of the open set E onE,
the integral mean-value theorem guarantees that

F(t(t)) - F( (O)) = fo DF(.(s)) '(s)ds = 0, V t r J.

In other words, the path : J -4 Eor)E remains on the manifold Mb, b = F(xo),
through the initial point xo, and (3.3) implies that ( (t), 4'(t)) E TMb, for tEJ.

From this and the standard theory of ODEs (see e.g. [6] or [13]) we obtain
now the following existence and uniqueness result:

Theorem 2: Let (3.1) be a C0-vectorfield, a 2! 1, on the (non-empty) open

subset Eo of Rn.Then the following results hold:

(i) There exists a C0-integral curve t: J -+ Eo of n through each x r Eo
defined on an open interval J containing 0. Moreover, any two such curves are
equal on the intersection of their domains.

(ii) If 7r is tangential to the family (2.1) and EonE is non-empty, then any 3
integral curve :J -4 Eor E of n through xo E EornE satisfies (t(t), t'(t)) e TMb,
b=F(xo), for all t E J. 5

(iii) The union of the domains of all integral curves of n through a point
xE Uo is an open, possibly unbounded interval Jx = (t.(x), c,(x)). There exists a 3
CO-integral curve *:Jx -4 E., of 7c through x, and Jx is the largest interval on
which such an intergal curve exists.

(iv) If T+(x) < - for some x e E0, then for any compact set C c Eo there exists I
a 8 > 0 such that 4*(t) e C for t > t+(x)-5. A corresponding result holds when a
t(x) > -00

(v) The set D(n) = {(t,x) e R1xUo; teJx} is open in R'xEo and contains
{O}xU 0 . Moreover, the global flow yD(7c) - Eo ,y(tx)=t*(t), te Jx, of 71 is of

class Cc on D(n).

Consider now a second order initial value problem x" = O(x,x'), x e E0, I
I
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x(0)=x 0 ' x'(O)=y o, which, of course, may be written in the first order form

(3.4) x' = y, y'= e(x,y), x e Eo, x(0) = xo, x'(O) = Yo.

Thus, we encounter in this case a vector-field of the form

(3.5) n: ET = EoxYcTEo-JT2Eo ; t(x,y) = ((x,y),(y,E(x,y))), V (x,y) e EoxY

on a subset of the tangent bundle TE O of E0. Note that the second and third
component of the image vector are identical. In other words, (3.5) represents a
sub-class of the vector fields on E. called the vector fields on E. that are

consistent with a second order ODE. We assume always that the domain E of

n is some open subset of TE O.

An integral curve of (3.5) through a point (xo, yo) e E,, is now a C0-path

:J.-* Eo, defined on some open interval J c R1 containing 0 e J, for which

( (t), '(t)) E E , (0)=Xo, F'(O)=y o

(3.6)
((W()()I ),( '(t,"(t)) = (() () ,V t E J;

that is, which is a solution of the initial value problem (3.4).

As before, the vectorfield (3.5) is called tangential to the family of tangent
bundles TMb, be F(E), of (2.1) if K(x,y) ET(xy)(TMb) for (x,y)e E 7 nTMb; that is, if

(3.7) DF(x)O(x,y) + D2F(x)(y,y) = 0, V (x,y) e E,, r(ExkerDF(x))

Then, for any integral curve :J - EonE, of n through (xo,yo) e Etr-TMb such

that DF( (t)) '(t) = 0, t e J, the integral mean-value theorem provides that

DF(4(t)) '(t)-DF(xO)yo j [DF(4(s))4"(s)+D 2 F((s))(R'(s),4'(s))] ds = 0, V t E J

DFIt)'t)D~oY
I,.
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Hence, the path :J -- EonE remains on the tangent bundle TMb, b = F(xo),

corresponding to xo and (3.7) implies that (( (t), '(t)),( '(t),F"(t))) eT 2 Mb, fort E J.

Again an existence and uniqueness result of the form of Theorem 2 holds.
We note here only the following shortened version. I
Theorem 3: Let (3.5) be a Co-vectorfield, a > 2, on the (non-empty) open -

subset E. c TEO c TRn. Then there exists an integral curve : J -+ Uo of 7C

through each (x,y) E E. defined on an open interval J containing 0. Moreover,

any two such curves are equal on the intersection of their domains. If n is

tangential to the family (2.1) and EornE is non-empty, then any integral curve
:J --> Eor-E of n through (xoyo) c E.r)TMb , b=F(xo), for which DF(t(t)) '(t) = 0

for t in J, satisfies ((E(t),F'(t)),( '(t),F"(t))) eT2 Mb, for all t e J. 5

4. A Class of First and Second Order DAEs

In this section we begin with the autonomous, first order DAE 5
(4.1) F1(x) = b

F2(x, x', z) 0
for which we assume that 5
(4.2a) FI: ExcRn -- Rr and F2: E2 = ExxEpxE z c (Rn)2 xRm -- Rs are

of class CP, p > 3, on their domains, where ExcR n, E pcRn, and

Ez c Rm , are non-empty open sets, and r<n5r+s=n+m; and
(4.2b) for each (x,p,z) e E2 the matrix

DF1 (x) 0

DpF 2(x,p,z) DzF 2(x,p,z))

is non-singular. 5
From (4.2b) it follows that DF,(x)Rn = R1 for all x E Ex and hence, as we saw 5

in section 2, that each member of the family of sets I
I
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(4.3) Mb = { x E, F1(x) = b}, b e Fi(Ex),

is a non- empty (n-r)-dimensional Ce-sub-manifold of Rn. For any xo c Ex we
call the unique manifold (4.3) with b = Fl(x o) the constraint manifold through
that point.

For given b E Fi(Ex) a C-solution, 1 <a < p-i, of (4.1) consists of two C0 -

paths x: J -4 Ex and z: J - Ez, defined on some open interval J of R1, such
that

(4..4) (x(t),x'(t),z(t)) E E2 , F, (x(t)) = b, F2(x(t),x'(t),z(t)) = 0, V t E J.

This necessitates that DF, (x(t))x'(t) = 0, V t E J. Hence, if (xo,po,zo) E E2 is any
point on a solution (4.4); that is, if x(to) = xo, x'(to) = Po, z(to) = zo for some to E J,
then we must have DF1(xo)po = 0, and F2(xo,Po,Zo) = 0, while, of course,
automatically xo E Mb for b=Fl(xo).

This suggests the definition of the initial data ma.

(4.5) H: E2 -- RrxRs, H(x,p,z)=( DFI(x)p) (x,p,z) E E2 .F2(x,p,z) )'

Evidently, for any given (x,p,z) E E2, the partial derivative DpzH of H with
respect to p and z is the matrix in (4.2b). By Theorem 1 this implies that

(4.6) K = { (x,p,z) e E , ; H(x,p,z) = 0 }

is a n-dimensional CP-I-submanifold of (Rn) 2xRm, the initial data manifold of
the problem.

A general existence and uniqueness theory for (4.1) was given in [12] and
requires a closer analysis of the relationship between the initial data manifold
K and the constraint manifolds (4.3) utilizing the theory of covering spaces. For
the applications considered here it suffices to restrict attention to the case
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when F2 is linear in p and z; that is, when (4.1) has the special form

(4.7) F,(x) =b

A(x)x + B(x)z + G(x) = 0,

Here (4.2a) requires that Fi: ExcRn-- R r, A:Ex-* L(Rn,Rs) , B: Ex-4 L(Rn,Rs), and

G: Ex- - Rs are of class CP, p > 3, on the open non-empty set ExcRn , and that

r<n<r+s=n+m. Moreover, condition (4.2b) is equivalent with the assumption

that for each x e Ex the matrix

(4.8) (DF (x )A (x) B (x)

is non-singular.,I

Hence, in this case the equation H(x,p,z) = 0 has for each x E Ex a unique

solution

P 1(x) D, F(x) 0
(4.9) (x () B(x) G(

I

Then

(4.10) ::E x  --->TE x, n(x) = (x, rI(x)), x E x

defines a CP-vectorfield on the open set Ex which by definition of the initial

data manifold K is tangential to the family of constraint manifolds (4.3).

Now, consider (4.7) together with the initial condition x(0) = xo e Ex and set

po=Tl(xo), zo=C(xo) which implies that (xo , po, zo) E K. Then Theorem 3 holds

and there exists an integral curve :J -> Ex of n through xo for which

( (t), '(t))E TMb, b=F(xo), for all t e J. In other words, the paths x:J-*Ex, z:J-*Ez,

defined by x(t)=t(t), z(t)=C((t)), teJ, constitute a solution of (4.7). 5
Instead of repeating all of Theorem 3 we summarize this result only as 5

follows:

I
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Theorem 5: If (4.2a/b) holds for (4.7), then, for any given xo e Ex ,there exists a
unique, maximally extended Cr-solution x: J -* E1 and z: J --+ E., of (4.7) which

i satisfies the initial conditions x(0) = xo, x'(0) = Po = 1(X), z(0) = Zo="(Xo)-

As noted, a corresponding result for the general equation (4.1) was proved3 in [12]. There the theory was also extended to the second order system

(4.11) F1 (x) = b
F2 (x, x', x", z) = 0

subject to the conditions

(4.12a) F1: E~cR n --+ Rr and F2:E2 = ExxEy xEqxE z c (Rn)3 xRm - Rs

are of class CP, p _> 4, on their domains where ExEyEzcRn,

and Ez c Rm , are non-empty open sets and r<n!r+s=n+m;
(4.12b) for each (x,y,q,z) E E2 the matrixI

DFi(x) 0
DqF2(x,y,q,z) DzF 2(x,y,q,z))

is non-singular.I
As before we see that each member of the family of sets (4.3) is a non-

3 empty (n-r)-dimensional CP-sub-manifold of Rn, the constraint manifold of

(4.11) through xo.

IIt is natural to reduce (4.11) to the first order system:

I F1 (x)=b

(4.13) x'-y =0

I F2(x, y v' z) =0.

3 With the combination (x,y) as new differential variable, this constitutes a DAE of

the form (4.1) for which (4.2a) turns out to be valid. However, (4.2b) does notI
!
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hold since the corresponding matrix 
I

DF1(x) 0 0 I
In 0 0

0 DqF 2(X,y,q,z) DzF 2(X,yq,z))

is singular. This failure of (4.2b) is hardly surprising since we should expect
(4.11) to induce a vector field on the tangent bundle TEX that is consistent with 5
a second order equation.

For any b e Fi(Ex) a C-solution, la_p-2, of (4.1) consists of C- paths

x: J -- Ex and z:J -- Ez, defined on some open interval J of R1, such that 3
(4.14) (x(t),x'(t),x"(t),z(t)) e E2, F, (x(t)) = b, F2(x(t),x'(t),x"(t),z(t)) = 0, V teJ.

This implies that DF, (x(t))x'(t) = 0, DF, (x(t))x"(t) +D2Fl (x)(x'(t),x'(t))=0, for all t

in J, which means that y.J-4T2M b , Y(t) = ((x(t),x'(t)),(x'(t),X"(t)), t e J, is a pathI
on T2Mb. In analogy to the first order case, this suggests the definition 5
(4.15) H:E 2 c (Rn) 3xRm ---- Rr+s

H(x,y,q,z) = (DF1 (x)q+D2F1 (x)(y,y), F2(x,y,q,z)) , V (x,y,q,z)e E2  I

for the initial data map of (4.11). Once again, (4.12b) implies that the solution

setI

(4.16) K = { (x,y,q,z) e E2 ; H(x,y,q,z) = 0 3
is an n-dimensional CP- 2-submanifold of (Rn) 3xR m, called the initial data 5
manifold of (4.11).

As before, we shall not present here the general theory but restrict I
ourselves to the linear case I

(4.17) F, (x) b

A(x,x')x" + B(x,x')z + G(x,x') = 0, I
I
I
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Then (4.12a) requires that the maps FI: ExcRn Rr , A: ExxEy- L(Rn,R s ) ,

1 B:ExxEy -* L(Rm,Rs) and G: ExxEY- Rs are of class CP, p>4, on their domains
where EX ,Eyc Rn are non-empty open sets and r<n!r+s=n+m. Moreover,

1 (4.12b) is equivalent with the assumption that the matrix

3 (4.18) DFI 0 )
A(x,y) B(x y)

is non-singular for all (x,y) e ExxEy.

Then, as in the first order case, the equation H(x,y,q,z) = 0 has for each (x,y)
I in ExxEy a unique solution

(4.1) q 11 x~y)DF,(x) 0,Y y D2F,(x)(y,y)
z ) x'y) A(x,y) B(x,y) G(x,y)

I and hence

(4.20) 7c: E = ExxEy c TEX -4 T2 E1 , 7r(x) = ((x,y),(y,ij(x,y))), (x,y) E E7

I defines a CP- 1-vectorfield on the open set E. of the tangent bundle TEX.

Clearly, by definition of the initial data manifold K, this vectorfield is tangential
to the family of tangent bundles TMb, bE FI(Ex) of the constraint manifolds (4.3)
of (4.17); that is,

(4.21) DF1 (x)T1(x,y) + D2Fl(x)(y,y) = 0, V (x,y) E Exx(Eyr-' kerDF1 (x))

INow, consider (4.17) together with the initial condition

1 (4.22) x(0) = x0 , y(0) = yo , (xo,yo) r Ex x (Eyn kerDF1 (xo))

I and set qo=rj(xo,yo), zo= (xo,y o) which implies that (xo,y o , qo, zo) e K. Thus by
Theorem 3 there exists an integral curve 4:J -* E. of 7c for which (3.6) holds.

5 By definition of 7 we have ((e(t), '(t)),( '(t), "(t))) E K, t e J, and hence, in

particular DFl(4(t))4'(t) = 0, t • J. Thus it follows that (( (t), '(t)),( '(t), "(t))) •

I
I
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T2Mb, b=F l (x0), and therefore that the paths x:J-E. , z:J-4Ez , defined by
x(t)= (t), z(t)= ( (t)), te J, constitute a solution of (4.7). 3

Once again, instead of repeating all of Theorem 4 we summarize this result
only in the brief form:

Theorem 6: If (4.12a/b) holds for (4.17), then, for any given initial data (4.22),
there exists a unique, maximally extended CP-solution x: J -+ EX , z: J - Ez , of
(4.17) which satisfies the initial conditions x(O) = x0, x'(O) = Yo, x"(0)=i(x0,y0),I

z(0) = (XoYo).

For a corresponding result for the general equations (4.11) see again [12].

5. Local Parametrizations

As shown in [12] the results about the semi-implicit DAEs (4.1) and (4.11)
lead to a general local parametrization approach for the numerical solution of
these systems. Once again, we shall restrict our discussion here to the linear
systems (4.7) and (4.17).

Consider first the system (4.7), and suppose that we are in the setting of
Theorem 5. Thus, we wish to compute a numerical approximation of the

unique CP-solution x: J - EX, z: J - Ez of (4.7) which satisfies the initial
conditions x(O) = x0, po = TI(x 0), z0 = (x0) for given x0 e Ex. Here Ti:E x - Ep and
C:E x - Ez are the mappings (4.9). As we saw, the problem of solving (4.7) in
Ex then reduces to that of solving the explicit initial value problem

(5.1) x'= TI(X), x E Ex, x(0) = x0.

Since the desired solution x: J - E0 of (5.1) through x0 remains on the tangent 5
bundle TMb of the constraint manifold Mb , b =F(xo), through x0 it is natural to
work with a local coordinate system on Mb.

I
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Consider any point xc E Mb, on the manifold Mbthrough xo.The subscript 'c'

indicates here that xc will later represent a 'current' (approximate) point on the

solution. Now choose a linear subspace T c R', dim T = n-r, such that T-r ker
DF(xc) = {O}. Then it follows from the implicit function theorem that there exist

open neighborhoods V of the origin in T and Sx of xc in Rn, respectively, as

well as a CP-map w:V--T-Lc Rn with w(O) = 0, such that Mbr'Sx=(V) where P
is the local coordinate map

(5.2) T: V --> Rn, I(t) = xc + t + w(t), t r V.

In practice it is often useful to work with local coordinate mappings that

correspond to the tangent spaces of Mb; that is, to choose T=kerDF(xc). Note
that then Dw(0) = 0, (see, e.g., [11]).

For the computation we introduce orthonomal bases

01 r L(Rnr'Rn), Q2 E L(RrRn),

(5.3) Q1Rnr= T, Q2Rr= T-L

QI*Q1 = In-r , Q2*Q2 = 'r Q2*Q1 = 0

for T and T-L.Then we have the transformed local coordinate map

(5.4) (D): U = QI-lV --* Rn, (D(u) = xC + Q1u + Q2 C(u), u e Uc R, r

where co(u) = (Q21T-L) -l w((Q1 IT) "1 u), u E U, is again of class CP and satisfies
co(O)=0. From Fl(D(u)) = 0 we find that D)(u)Rn-r c ker DF,(O(u)) for u E U

and, by (5.3), that

(5.5) Q*D(D(u) = Q1*11+Q2 Do(u)] = In-r

whence, by a dimensionality argument,

(5.6) D(D(u)Rn-r = ker DF1((D(u)), V u r U.

This implies that for any u E U and c e ker DF1 (D(u)) the equation D(D(u)a=c
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has a solution a r Rn-r for which a -Qi*c and hence which is unique. I
In our local coordinate system we obtain for the ODE (5.1) the local

representation 3
(5.7a) DO (u)u' = 11l(D(u)), u e U 3
which, because of TI(4(u)) r ker DFI((D(u)), can be written in the form of the
(n-r)-dimensional explicit system 3
(5.7b) u' = 01* Tl(D(u)), u E U. 3
Obviously, with p = Q1ill + Q2T12 , i1 c Rn'r', 12 e R1, the equation H(x,p,z) = 0 3
becomes the non-singular, linear system

A(x)Ql A(x)Q 2  B(x) @G(x I
DF()G ~ =()

Hence, if, for given x = D(u), uE U, the solution of (5.8) has been found then we
have 01* il(a(u)) = 1i1 and C(0(u)) = z. 3

This local parametrization can also be carried over to the second order I
system (4.17). As before, suppose that we are in the setting of Theorem 6.

Thus, we wish to compute a numerical approximation of the unique CP-1-

solution x: J -.- Ex, z: J -- Ez of (4.17) which satisfies the initial conditions
x(0)=xo, x'(0)=yo, x"(0)=ij(x0 ,y0 ), z(0)=C(x 0 ,y0) where (xo,yo)e ExxEy n TMb,
b=F l(xo), are given and TI: E, = ExXEy - Eq, C: ExxEy Ez , are the mappings
(4.19). As we saw, the problem of solving (4.17) reduces to that of solving the
explicit system I

(5.9) x'= y, y' = TI(x,y), (x,y) • En, x(0)=xo, y(0)=y0, 3
Since the desired solution x: J - Ex of (5.1) through x0 remains on the second

tangent bundle T2 Mb of the constraint manifold Mb through x0 we are led to

I
I
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I working with a local coordinate system on TMb.

I Once again let xC be a 'current' point on the manifold Mb through x0 and
choose a linear subspace T c Rn, dim T = n-r, such that T-'r)kerDF(xo) = M0.I Then, with basis maps 0 1,02 satisfying (5.3), the local coordinate map (5.4) is
well defined and

(5.10) e:uxRn-r - TMb, G(u,v) = ('D(u),D'D(u)v), U E U, v En-

defines a local coordinate system on TMb. Clearly, we can choose some
neighborhood So of the origin of UxRnr, such that 8(u,v) belongs to E. for all

(u,v) in Sol

I Thus with x = (D(u) and y = D4D(u)v = Q1V+Q2Dco(u)v, the differential
equations (5.9) assume the local form

(5.11) D(D(u)u'= Q1V+Q2Do(u)vI Dcb(u)v' + D24D(u)(u',v) = Tl((D(u), Q~V+Q 2Dco(u)v).

Recall that for any d e ker DF, ((D(u)) the unique solution of D(D(u)a = d is
a=Qi*d. Hence, since Q1V+Q2Do)(u)v r= kerDF,(x), the first equation reduces
simply to u'= v and, with this, the second equation can be written as

D(D(u)v' = T1(x,y) -D20(u)(v,v) , X =cD(u), Y = Q)1V+Q2Dco(u)v.

From DF, (c1(u))D4D(u) = 0, it follows, together with (4.21) and (5.9), that

1(5.12) 0 =DF,(x)D 2(D(u)(v,v) + D2F,(x)(DD(u)v,DO(u)v)
-DF,(x)D

2qD(u)(V,V) + D2F,(x)(y,y)

-DF, (x)[D2(D(u)(v,v) - TI(x,y)] , V (u,v)e So

I and, therefore that, as desired, Tl(x,y)-D2D(u)(v,v) e ker DF, (x).

3 With this we have shown now that on S., the equations (5.11) can be
reduced to the explicit form
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(5.13) u =v 
v = Q1* [7Q(((u),Q 1V+Q2Dco(u)v) - D2 (u)(vv)].

From (5.5) it follows that QI*D2(u)=O , so that (5.13) reduces to 3
(5.14) u'=v 3

v'=Qj*T((tD(u),Qiv+Q 2Dc)(u)v) = Ql*Tl(((u),D(D(u)v)

Now , with i1(x,y)=QT11 + Q2'12, T11 E Rnr, 12 E ar, the equation H(x,y,q,z) = 0

becomes the non-singular, linear system 3
'51' DF1 (X)Ql DF1(X)Q2  0l _(1l 2 ( (x)(y,y) I( A(x,y)Q1 A(x,y)Q 2  B(x,y) ) (112 G(x,y)

Hence, if, for given x = (D(u), y = D(D(u)v, (u,v) E SO, a solution of (5.15) has I
been obtained then v' = Q,*T(()(u),D(D(u)v) = 11 and z =(t'(u),D(D(u)v).

6. Computational Implementation of the Local Parametrization 3
In the previous section we have used the local coordinate map (5.4) to

reduce the semi-implicit DAEs (4.7) and (4.17) to the explicit systems of ODEs I
(5.7b) and (5.14), respectively. Theoretically any ODE solver can be applied to

these ODE systems to obtain a local solution of the original DAE. Before 3
discussing this in more detail, we consider first how the local coordinate map

(D) of (5.4) at the current point xc of the constraint manifold Mb, b = Fj(x 0), may 3
be implemented and how we might choose the matrices Q1 and Q2 that define

this local parametrization. 3
By definition, for any given u e U, the point x = (D(u) on Mb is the solution

of the augmented system I

(6.1) F,(x3
Q~x - Xc) u
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Here, of course, the matrices 01 Q2 are assumed to satisfy (5.3) and the

subspace T=Q I*Rn-r has to induce a local parametrization of Mb at xc; that is,
we have

(6.2) (a1 Rn- )-r ker DF1 (xc) = {0}.

It is readily seen that (6.2) holds if and only if the Jacobian

(6.3) DF(Q x)

of the mapping on the left side of (6.1) is nonsingular at xc which, in turn is
equivalent with the nonsingularity of DF1(Xc)Q 2.

As proved, for instance, in [7], under this nonsingularity assumption there

exists an open set U1 c U containing the origin, such that for any u in U1

Newton's method applied to (6.1) and started from y(O) = xc + Qu produces a
sequence of points {y(k)) that converges Q-quadratically to x= (u). A step of
this process here has the algorithmic form:

(1) Evaluate a1 = FI(y(k)) - b, a2 = Qj*(y(k) - Xc);

(2) solve the linear system

DFI F(y(k)) s(a,)
D ; a2

(3) set y(k+l) = y(k). S.

Observe that for our choice y(O) = xc + Qu of the starting point the iterates y(k)

remain in the affine subspace xc + Q2Rr.

Let si = Q1*s, S2 = Q2*s, then, by (5.3), we have s = Q1s1 + Q2s2 and we
obtain the solution of the linear system in step (2) by setting sl=a2 and solving

I
I



I
20

the (n-r)-dimensional linear system I

(6.4) [DF 1(y(k))Q 2] S2= a, - DF(X(k)) Qa 2
• .

Thus, when the Jacobian of Fj(x) is readily available, then Newton's method 3
provides an efficient numerical procedure for implementing the local
coordinate map (5.4). 3

We turn now to the construction of the matrices Q1, Q 2 for which (5.3) and
(6.2) are satisfied . Two choices appear to be particularly useful in practice.
The first one was already mentioned in the previous section and defines the
parametrization by using the space T = ker DF,(x c) corresponding to the 3
tangent space of Mb at xc.In this case the matrices Q1, Q2 may be obtained, for
instance, by performing a QR-factorization of the transposed Jacobian of F1  3
(6.5) DF(xo) =-- ) 

where 0 is an nxn unitary matrix and R an rxr upper triangular matrix which, by 3
(4.2b) is non-singular. In fact, it follows easily that then the local
parametrization is defined by the matrices

(6.6) Q2 = Q(e, ...,er) , 1 = Q(er+l . en)

formed from the first r and last n-r columns of 0, respectively. Here e1, ... en
denote the natural basis vectors of Rn. 3

This "tangent space" parametrization may be somewhat costly to use. To 3
reduce the cost it is advantageous to choose a local coordinate space T which

is spanned by n-r suitably selected natural basis vectors of Rn. If, say,

(6.7) T- = span { e ,, ...,ej,}, T = span { e i,, ....,eo I I

then the condition T'Lker DF(xc) = {0) requires that we select the indices

Jl,',Jr such that the corresponding columns of DF(x c) are linearly 3
independent. It is well-known that such a choice may be derived, for instance, I

I
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from a Jordan factorization with row and column pivoting, or from a singular

value decomposition (SVD) of DFl (xc) (see.e.g. [3]). The matrices of the local

parametrization induced by (6.6) then are

(6.8) Q1 = ( ej,,, .... ejn ), Q2 = (e1, .... ej,)

and satisfy (5.3) by construction.

The choice of the permutation [ 1J.... Jn] in (6.7) and (6.8) "partitions" the

components of any vector x into a vector 41 = Q1x of " independent coordinates

"and a vector k, = Q2x of "dependent coordinates ". Thus it is natural to call

(6.8) a local parametrization by "coordinate partitioning".

I
7. Explicit and Implicit Multistep Methods

Consider again the first-order DAE (4.7) under the assumptions (4.2a/b)

which, by Theorem 5, guarantee the existence of a solution x:J --- Ex , z:J -- Ez

that satisfies the initial conditions x(O) = xo , x'(0) = po = T1(xo), z(O) = Zo=C(x o)

3 corresponding to the given point xo r Mb on the constraint manifold.

Suppose that xc = x(tc) E Mb is a 'current' point on this solution where a

local parametrization (5.4) has been constructed. In some region near xc we

wish to compute a sequence of approximation

(7.1) xi = x(ti), zj = z(t), ti= tc+ ih , i=1,2,...,N

of points x(tk) along the solution. More precisely, we suppose that the

3 constants h and N are chosen such that the points x(tk) belong to the

neighborhood of xc where the local parametrization (5.4) is valid Then, if u is

Ithe solution of (5.7b) satisfying the initial condition u(tc)=O, it follows that

(7.2) X(tk) = ()(u(tk)) k=1,2,... ,N, x(tc) = 4)(u(tc)) = xc .

I
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For the approximate solution of (5.7b) we consider a multistep method of
the general form_3

(7.3) Uk = aiUk-i + j PP'-i, u'k = Q J1(4(Uk.i))I
i-1 i0

which is assumed to be consistent; that is, I

(7.4) 1,
i..1

as well as convergent of order' 1. Assume that for some k, 1 < k < N, the
approximations 5
(7.5) Uj =- U (tj) , Xj = (D(uj) j=0, 1 .... k-l1,

have already been computed. Then the next point uk = u(tk) along the solution
of (5.7b) is specified by (7.3) and, by solving the equation (6.1) with u = uk, we 3
obtain xk = 1 (uk) as the next approximation of the solution of (4.7).

As shown in section 5, the vectors U'k- i of (7.3) are the solutions of a linear
system of the form (5.8). We consider first the case Po = 0 of explicit integration.
Since the local coordinate map (5.4) is defined by the matrices Q1 ,Q2 we have,I
by (6.1),

(7.6) u = Ql*(x-xc)

In other words, we may assume that the computed approximations (7.4) satisfy

(7.7) uj = Q1*(xj-xc), j = 1,2,...,k-1

Together with (7.6) this implies that when Uk is determined by the multistep I
method (7.3) then, instead of using (6.1) with u = uk, we may obtain Xk= (Uk)
as a solution of the nonlinear system

I
I
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1 (7.8) Fi(x) - b =(7.8) = 0

This leads to the following algorithm for computing from the last p known
approximations

1 (7.9) Xk-j = X(tk-j )I Zkj  Z(tk-j ), W j TI(Xk j) , j= 1,2,... ,p

3 a next approximate point on the desired solution of (4.7):

Algorithm 1. (1) Evaluate ak = Q(, (iXk-i + hi PiWk-i)
i=1 i=1

(2) Compute the solution Xk of the nonlinear system

5 CFj(x) -b -0
IQix- ak

(3) With x = x k solve the linear system (5.8) to obtain
Wk=Qill and Zk=Z.

This algorithm may be applied as long as the computed points do not leave
the region of validity of the local parametrization at xc defined by Q1 and Q2. To
determine when the points leave this region is a very delicate problem and3requires special attention. In our numerical implementation we decide to
change the local parametrization when the estimated condition number of the3Jacobian of the system in step (2) becomes too large or when the number of
Newton steps required for solving this system exceeds a certain bound. Of
course, if the multistep method (7.3) has order u) then one should solve the

systems in step (2) and (3) with an error not exceeding O(h"+').

I A further delicate problem is the initialization of the overall process. One
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approach is to obtain u1 ,u2, .... u p by means of some known start-up process for

the multistep method (7.3) applied to the ODE (5.7b) and then to set

Xi = c(u wi=r'1(x1) ,i= 1,2....p

by solving the corresponding systems (6.1) and (5.8) . Numerical experience
indicates that no reinitialization is necessary when passing from one local

parametrization to another.

In the case Do # 0 the new point is implicitely defined by both (7.3) and -

(5.8); that is, the systems in step (2) and (3) of algorithm 1 can no longer be

solved separately. Thus, in this case the algorithm has to be modified as I
follows:

I
Algorithm 2. (1) Evaluate ak = Q( ,iXk. i + hi PiWk.i)

i,,1 i=1 1

(2) Obtain xk = x, Zk = Z , Wk = w as the numerical solution of

the nonlinear system

FI(x) - b 3
Q(x - hf3ow) - ak 0

DFI(x)Qlw + DF1 (x)Q 2v 1=-

A(x)Qlw + A(x)Q 2v + B(x)z + G(x)

The comments following algorithm 1 apply again; in particular, the i

nonlinear system in step (2) has to be solved with an error not exceeding

O(h'J+l)"

These results can be readily carried over to second order systems of the I
form (4.17). For this we assume now that the hypotheses of Theorem 6 are
satisfied and hence that the existence of a solution x: J -4 Ex , z:J - Ez of
(4.17) is guaranteed which satisfies the initial conditions x(0) = x0 , x'(0) = Yo, 3
x"(0)=ii(x0 ,y0 ), z(0) = (xo,yo) for a given point (Xo ,yo) E Ex x (Eyn kerDF1 (xo )). I

I
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As above, let xc = X(t) e Mb, b=Fl(xo), be a current point on this solution

where we construct a local parametrization (5.4) defined by the linear maps

Q1 Q2. In section 5 we saw that in some neighborhood of xc, where this
parametrization is valid , the functions

(7.10) u = Ql*(x-xc), v = Qj*x'

satisfy the ODE (5.14).

3 In the second order case, the multistep method (7.3) now reads

(7.11 a) Uk = cL XiUk_, + _ fiVk-i, Vk = , iVk.-i + , PiV'k-i,
=1 =0 i61 =0

3 where

5 (7.1 lb) V' * = I*(0(u), DW(u)v, ).

As we saw at the end of section 5, vi' is obtained by solving the linear system
(5.15).

3 We begin again with the case 0o = 0 and use the same notation and

assumptions as before. In particular, letI
(7.12) xi =  x(ti), yj - x'(ti), wi =- lr(xi, yi ), zi - z(ti) , i = 1,2,...,k-1

I be known approximations. Then we obtain the following the explicit-integration

algorithm for computing from the last p points of this sequence the next

approximate point:

I

I (1) Evaluate ak = Qi(k cziXk-i + hi I3iYk-I), a'k = Qi( Yk-i + h_ IPiWk-i)
i1 i-1 i-1 i61I

I
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(2) Solve the nonlinear system 3
F1(x)-b

ejx- ak = 0
Q~y - a'k!

DFI(x)y

to obtain Xk=X, Yk=y.

(3) With X=Xk, Y=Yk obtain Wk = 0 Tll and Zk = z as solutions of the linear 3
system (5.15).

When 03o * 0 then, analogous to algorithm 2, we can implemeit the U
multistep method (7.11 a/b) for the numerical solution of (4.17) as follows:

Algorithm 4. I
(1) Evaluate aka'k as in step (1) of algorithm 3.
(2) Solve the nonlinear system 3

F1 (x) - b

Q;(x-pohy) - ak

Q;(y-pohw) - a'k = 0

DFI(x)y

DF 1 (x)Q1 q1+DF1 (x)Q 212 + D2F1 (x)(y,y) 5
A(x,y)QTlI+A(x,y)Q2"12+B(x,y)z + G(x,y)

to obtain XkX, Yk=y, Wk= Ql111, Zk=Z. -

Obviously the comments made immediately following algorithm 1 apply -

again to both algorithm 3 and 4.

I
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8. Agolication to the Euler-Lagrange Equations.

I A classical example for second order DAEs of the form (4.17) are, of

course, the equations arising in constrained multibody dynamics. These

3 equations have the general form

3 (8.1) T'(q,t) = 0,

M(q,t) q" + DqT(q,t)Tz + K(q,q',t) = 0,

and are subsumed under the special case of (4.17) when both A and B

depend only on x. In fact, we need to set only x=(q,t) and define

Fi(x) = P(q,t), A(x) = M(q,t) 0 )
(8.2)

3 ~~~B(x) 0 q(~t T J G(x,x') 0 ~~q,)7

Suppose that in (8.1) the mappings T: Rn-1xR1-+ R1, K:(Rn-1)2xR1-4 Rn'1,

and M:Rn' 1xR 1-4 L(R n -1 ,Rn 1), r < n-i, satisfy, for all (q,t) under consideration,

3 the smoothness conditions corresponding to (4.12a). Evidently, (4.12b) is here

equivalent with

(8.3) rankDqT(q,t) = r, aTM(q,t)a * 0, V a E ker DqT(q,t);

I that is, with the assumptions that the algebraic constraints are independent
and that the mass matrix M is definite on the nullspace of DqT. Thus, Theorem

6 applies to (8.1). Note also that now the defining relations (4.19) for the

mappings rl:(Rn'l)2 -- , R : (Rn'l)2 -* Rr, have the form

(8.4)

3 (rj~~qt)- M~~t Dq~qt)T 'f(K(q,q',t)il(q,q',t) ). Dq'(q,t) 0 T) .Dq'q(q,t)(q',q')+2D'qtT(q,t)q'+D~ttT(u,t)

I
I
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We reduce (8.1) to a system of ODEs by using a local parametrizations of
the type considered in section 6. However in doing so care should be taken
not to modify the "special" variable t. By (8.2) we have

(8.5) DF,(x) = (DqT'(q,t), DtP(q,t))

and because of (8.3) there exist always r linearly independent columns among 3
the first n-1 columns of DF,(x). Hence, when we construct a local
parametrization by "coordinate partitioning" at a current point xc = (qc,tc) then
we can always choose a permutation Jl ....Jn-1 of the set {1,2,... ,n-1} such that
the matrices

(8.6) 01 = (ej.,.. ., , en) = P 1  Q2 = (ejl, ... , ej,) = (P 2)

satisfy (5.3) and (6.2) and hence define the desired parametrization. Evidently,
in (8.6) the (n-i)xr matrix P1 and the (n-1)x(n-1-r) matrix P2 consist of the basis
vectors of Rn- 1 with indices Jl,"',jr and Jr+l,'".,jn- 1, respectively. In other words,
we construct the parametrization (8.6) by working only with the rx(n-1) matrix 3
DqT(qc,tc) rather than with the rxn matrix DF (xc).

Analogously we can implement a "tangent space parametrization " by

performing a OR-factorization of DqT(qctc)* rather than of DF,(xc). More
specifically, if

(8.7) DqP(qc,tc) -= p ( R)

where P is an (n-i)-dimensional unitary matrix while R is again rxr upper-

triangular, then, corresponding to (6.6), the matrices

(8.8) Q = (P 0 )(er+,, ... en1, en) = (P O1 Q2=(P 0 )(e l ... ' er)=(P2)

satisfy (5.3) and (6.2) and hence define the desired parametrization. In (8.8),
P2 is the (n-i)xr matrix consisting of the first r columns of P, and the
remaining (n-1-r) columns of P make up the (n-i)x(n-1-r) matrix P1.
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Now, the algorithms 3 and 4 of section can be applied. However since the

matrices 01 02 of (8.6) or (8.8) have a special form some simplifications are
possible. Moreover, it should be taken into account that in many applications3 involving the equations (8.1) the accelerations

3 (8.9) x" - i - 1 i(x, x')

are explicitly required.

Suppose again that the approximate points

xi = (qi, ti), yi = (q'i,1), wi = (q"i,O), zi, ti = ih, i=0,1 ,...,k-1

are already known and that xc = (qc,tc) is the current point for the local
parametrization. Note that the multistep method (7.1 la/b) was assumed to be
consistent so that, besides (7.4), the coefficients must satisfy

-i jc'Lj + = 1i
j-1 j.o

Hence, in step (2) of algorithm 3 and 4, the last equation of Q1 x = ak reduces
to t = kh while the last equation of Q1 y = a'k is trivially satisfied. Thus, the

explicit algorithm 3 can be simplified as follows:

Algorithm 5. 1 aq

(1) Evaluate ak= P( (iqk-i + hi piq'k-i), a'k= P( Vi + hi Diqwk-i)
i-I i.I i-I

(2) Obtain qk=q, q'k =q' as solutions of the nonlinear system
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((q,tk)
Pq- ak =0

P;q'- aIk

DqW(q,tk)q' + DtI(q,tk) I
(3) With q=qk, q'=q'k solve the linear system (8.4) to obtain q"k = q", 3

and zk = z

For the implicit algorithm, it is useful to introduce the abbreviation U
y(q,q',t) = -Dq2q(q,t)(q',q') - 2Dqt'P(q,t)q' - DItt'(q,t). I

Then, with the acceleration (8.9), the last equations in the nonlinear system of 3
step 2 of algorithm 4 can be written in the form

Dq'(q, tk)q" = y(q, q', tk)
M(q, tk)q" + DqW(q, tk)TZ + K(q, q', tk) = 0 5

Evidently, the first of these equations can also be obtained formally by
differentiating the first equation of (8.1) twice. I

With these observations , algorithms 4 reduces to the following algorithm: I

Algorithm 6. 3
(1) Evaluate ak,a'k as in step (1) of algorithm 5.

(2) Obtain qk=q, q'k=q ', qk= q", Zk-Z as solution of the nonlinear system I
'P(q, tk)

P;(q-oohq') - ak I
P(q'-Oohq") - a'k 0

=qo(q, tk)q' + Dt(q, tk)
Dq'(q, tk)q" + y(q,q',tk)

M(q,tk)q"+Dq'(q, tk)Tz + K(q,q',tk)

I
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The numerical solution of the nonlinear system (9.23) represents a
significant computational challenge. However, in a separate paper it shall be
shown that when proper care is taken to exploit its special structure, then the
computational complexity of this problem can be reduced greatly.

10. A numerical example

A frequently encountered basic mechanisms is the four-bar system shown
schematically in Figure 1. To model this system, each of the four links and the
ground are considered as a body and marked by the integers 1,2, 3, 4. A
frame is fixed for each body with the origin at its centroid. For each body the
coordinates of the centroid are given in Table 1. This identifies also the initial
position of the system as it is sketched in Figure 1. Table 2 lists the mass and
moment of inertia for each body. All the joints of the mechanism are revolute
joints, they are marked by the letters A, B, C, D. Table 3 identifies the two
bodies connected at each joint and gives the coordinates of the common point
in the coordinate frame of each body. . The mechanism is subject to no
applied force other than gravity. The initial velocity of i.uch generalized
coordinate is assumed to be equal to zero.

Body # 1 2 3 4

x 0.0 2.0 6.0 12.0
y 0.0 2.0 4.0 4.0
0 0.0 n/4 0.0 n/4

Table 1 : Body centroids
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B~~i ~8.0 b~

0 .3 0

5.66 1

12.01

Fjgjj.e.1: Fourbar-UinkageI

Body # 1 2 3 4

Mass(kg 1.02000 30.0 00.
Massti (kg) 1.0 200.0 300.0 100.0

Table2: Masses and Moments of Inertia3
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Joint A B C D

Body 1 2 3 4
xi(P) 0.0 2.828 4.0 2.0
yi(P) 0.0 0.0 0.0 0.0

3od 2 3 4 1
xj(P) -2.828 -4.0 -2.0 12.0

3 yj(P) 0.0 0.0 0.0 0.0

Table 3: Joint data at the common point P

The constrained equations of motion for this system have been solved
using the algorithms discussed in Section 9. At the same time, as a check the
model was also analyzed by means of DADS, a general purpose code for
mechanical design [2].

The numerical experiments were carded out with the implicit as well as the
explicit algorithm. The second order BDF-formula was chosen as the implicit
method and the second order PECE- (Adams -Bashforth - Moulton)-formula as
the explicit method. In each case, fixed-stepsizes h=0.01, and h=0.0025 were
applied. The nonlinear systems were solved by a chord Newton method. As
indicated earlier, the local parametrization was changed whenever the
estimated condition number of the linear systems exceeded a specific bound
or when the nonlinear solver failed to converge in a given number of steps. In
Figures 2-4 we show the position, velocity, and acceleration of the x-
coordinate of the centroid of body 2 for the tangent space parametrization.
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x E 0
2.9 , , ' '

2.6 3
2.3

2.

1.7

1.4 A=O0.0 1(explicit)

. B = 0.01 (implicit)

C = 0.0025(explicit)

0.5 - D = 0.OO25(implicit)

0.51
0. 0.325 0.65 0.975 1.3 1.625 1.95 2.275 2.6 2.925 3.25

xE 0

TIME (SEC3

Figure 2: Position of the x-coordinate of the centroid of body 2.
x E , I-

0.0 I I T I I 3
0.575 3
0.35

0.125

-0.1

-0.3251
-0 3 5 - A = 0.01 (explicit)I

-0.55 B=0.01(implcW

C = 0.0025(explict) I
-0. 775

D = 0.0025(iiplicft)
- .I I I II I I I 1

0. 0.325 0.65 0.975 1.3 1.625 1.95 2.275 2.6 2.925 3.25
x E 0

TIME (SEC)3

Figu.,.. Velocity of the x-coordinate of the centroid of body 2. i
I
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I x E 2

1.0999999

1 0.8999999 A = 0.01(explicit)

B = 0.01(implicit)
0.7 C = 0.0025(explicit)

0.5 D = 0.0025(implicit)

0.3

3 0.1

1 -0.1

* -0.3

-0.5 I
0. 0.325 0 ,j.975 1.3 1.625 1.95 2.275 2.6 2.925 3.25

TIME [SEC)

EiaurP4: Acceleration of the x-coordinate of the centroid of body 1.

I
The numerical solutions obtained with the implicit method are accurate to

four decimal digits throughout the time interval [0,3] and hence, in the figures,
they cannot be distinguished from the solutions given by DADS. On the other
hand, the solutions obtained with the explicit method are drifting away for t >
2.5 sec. (see Fig 2, 3, 4) when the the stepsize is increased.

1 The computations were also carried out with the local parametrization,
induced by "coordinate partitioning "and they agree to three significant digits
with the result for the "tangent space" parametrization. Table 4 provides some
statistical information about the total number of function and Jacobian

3 evaluations as well as about the number of re-parametrizations for the two
choices of local parametrizations when the step-size h = 0.01 was used. In the

3 table, TG and GCP stands for the tangent space and coordinate partitioning

parametrization, respectively.I
U
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Explicit Method 6 -Me
TG GCP TG GCP

Function Eval. 989 1021 1456 1520 3
Jacobian Eval. 56 65 134 153
Re-Parametr. 6 6 15 19 3

Table 4: Performance Statistics

Acknowledaement: We would like to thank Mr. Jeng Yen for helping us with
many of the numerical experiments.
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